
 Introduction

In this paper we propose Stochastic Deep Gaussian Processes over 

Graphs (DGPG), which are deep Gaussian models that learn the mappings 

between input and output signals in graph domains. 

We summarize the contributions as follows:

• Present a deep Gaussian model (DGPG) that utilize graph information

• Propose a sampling method for optimizing the evidence lower bound

• Prove that the sampling variances of DGPG are strictly smaller than 

without using graph knowledge

• Show the superior performance of DGPG on various graph domains

• DGPG can model predictive uncertainties, and the ARD kernel allows it 

to automatically learn which neighbors are important for the prediction

 Methodology

 Stochastic Deep Gaussian Processes over Graphs

 Problem Statement

• Graph is defined as 𝐺 = 𝑉, 𝐸 , where 𝑉 (𝐸) is the set of nodes (edges)

• Input signal: 𝜓: 𝑉 → 𝑅𝑑𝑖𝑛; output signal: 𝜙:𝑉 → 𝑅𝑑𝑜𝑢𝑡

• Our goal is to learn  a function ℎ: 𝜓 ↦ 𝜙 that maps the input signals to 
the output signals

 Experimental Study

 Accurate Uncertainty Estimation

DGPG can make near-ground uncertainty estimation.
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 Background

 Sparse Gaussian Processes

Sparse Gaussian Processes (SGPs) [1] is proposed to assuage the 𝑂(𝑛3)

training complexity of traditional Gaussian processes. It introduces 𝑀

inducing inputs 𝐙 = (𝒛1, … , 𝒛𝑚)
⊤ ,and the corresponding function values are 

𝐮 = 𝑓(𝐙). A variational distribution 𝑞(𝐟, 𝐮) is used to approximate the 

posterior 𝑝 𝐟, 𝐮 𝐲) .Parameters are inferred by optimizing  the evidence 

lower bound (ELBO), defined as 𝐿𝑆𝐺𝑃 = 𝐸𝑞(𝐟,𝐮)[log
𝑝 𝐲,𝐟,𝐮

𝑞 𝐟,𝐮
].

 Doubly Stochastic Deep Gaussian Processes

Stochastic Deep Gaussian Process (DGP) [2] stacks SGPs to form a 

hierarchical deep structure. A DGP model with 𝐿 layers has corresponding 

ELBO as 𝐿𝐷𝐺𝑃 = σ𝑖=1
𝑁 𝐸𝑞(𝐟𝑖

𝐿)[log 𝑝(𝐲𝑖|𝐟𝑖
𝑳)] − σ𝑙=1

𝐿 𝐾𝐿[𝑞 𝐔𝑙 ||𝑝(𝐔𝑙; 𝐙𝑙−1)].

• 𝐗, 𝐘 ∈ 𝑅𝑁×𝐾𝑑 is the matrix representation of the input/output signal, 

where 𝑁 is the number of training instances, 𝐾 is the number of nodes, 

and 𝑑 is the feature dimension per node

• 𝐙𝑙 :inducing points for layer l; 𝐔𝑙 :function value of 𝐙𝑙

• 𝐌𝑖
𝑙,𝑘 denotes the 𝑖th row, 𝑙th layer and 𝑘th node of the matrix 𝐌

The joint distribution of the proposed DGPG model is defined as:

 Recursive Sampling Scheme

The ELBO of DGPG is:

The key observation is that by using the reparameterize trick, this ELBO can 

be achieved by a recursive sampling scheme:

Sampling is performed recursively, since the sampled function at layer 𝑙

dependents only on its parent nodes at layer 𝑙 − 1.

 Theoretical Analysis of Sampling Variances

The following theorem rigorously shows that under some technical 

conditions, the sampling variance of DGPG is strictly smaller than its 

counterpart without utilizing graph information.

Theorem 1. Denote the sampling variance of DGPG as ෨Σ𝑖𝑖, and the 

sampling variance of its counterpart without graph knowledge as Σ𝑖𝑖. Under 

some mild conditions (satisfied by most nontrivial graphs) we have ෨Σ𝑖𝑖 < Σ𝑖𝑖.

 Precise Mean Prediction

DGPG can achieve good performance on challenging regression tasks like

traffic flow prediction, it’s competitive to sophisticated graph neural networks

Table 1. DGPG* utilizes validation data during training. Terms with underline denote best results. 

Terms with wavy underline indicate second best.

 Automatic Relevance Discovery

DGPG can automatically discover which neighbors and nodes are more 

important for prediction.

Table 2. Variance analysis. For Gaussian (𝜇 − 𝑘𝜎, 𝜇 + 𝑘𝜎) CI

covers 68.3%/95.5%/99.7% of the density, so the test

instances falling in the predictive intervals have similar ratio.

Figure 2. The sensor with the least uncertainty locates at

sparsely populated area with simple traffic condition; the

sensor with the largest uncertainty locates at the business

center where the traffic condition is very complex.

Figure 3. Lengthscales inferred by the ARD kernel in: (left) 15 min; (middle) 30 min; (right) 60 min. Each node has 5

neighbors and 8 features:‘T’ represents time in a day; ‘D’ represents day in a week; t={6,...,1} represent the traffic at

5t minutes before. DGPG can discover that time plays a significant role, while which day the record occurred is less

relevant.

Figure 1. Factorization of the joint distribution.
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